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I: INTRODUCTION 

A: SCOPE OF THE STUDY 

The subject of Natural Language Processing can be considered in both broad and 
narrow senses. In the broad sense, it covers processing issues at all levels of natu- 
ral language understanding, including speech recognition, syntactic and semantic 
analysis of sentences, reference to the discourse context (including anaphora, 
inference of referents, and more extended relations of discourse coherence and 
narrative structure), conversational inference and implicature, and discourse plan- 
ning and generation. In the narrower sense, it covers the syntactic and semantic 
processing of sentences to deliver semantic objects suitable for referring, inferring, 
and the like. Of course, the results of inference and reference may under some 
circumstances play a part in processing in the narrow sense. But the processes 
that are characteristic of these other modules are not the primary concern. 

This chapter is mainly confined to the narrower interpretation of the topic, 
although it will become apparent that it is impossible to entirely separate it from 
the broader context. The reader interested in the more global problem is directed 
to the readings mentioned in the section on "Further Reading", below. 

B: THE ANATOMY OF A PROCESSOR 

All language processors can be viewed as comprising three elements. The first 
is a grammar, which defines the legal ways in which constituents may combine, 
both syntactically and semantically, to yield other constituents. The syntactic 
class to which the grammar belongs also determines a characteristic automaton, 
the minimal abstract computer that is capable of discriminating the sentences of 
the language in question from random strings of words, and assigning structural 
descriptions to sentences appropriate to their semantics. 

The second component of a processor is a non-deterministic algorithm that 
uses the rules of the grammar to deliver such structural descriptions for a given 
sentence. Such an algorithm schema determines, for example, whether the rules 
are used "top-down" or predictively, or "bottom-up", or some mixture of the two, 
and whether the words of the sentence are examined in order from first to last, or 
in some less obvious order. However, as the term "non-deterministic" suggests, 
this component does not itself determine what happens when more than one rule 
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can apply in a given state of the processor. 
This last responsibility devolves to the third component, the oracle, or mecha- 

nism for resolving such local processing ambiguities.1 The oracle decides which 
action should be taken at points in the analysis where the non-deterministic algo- 
rithm allows more than one. 

Such nondeterminism can arise from two distinct sources. The first source is 
lexical syntactic ambiguity, as in the case of the English word "bear", which can 
be either noun, nounphrase, or verb. The second source is structural syntactic 
ambiguity, which arises when there is more than one way to combine the same 
lexical categories to yield a legal sentence. For example, a parser for English 
that has dealt with the words "put the book on the table ..." is likely to be in a 
state in which the verb "put", the noun-phrase "the book" and the prepositional 
phrase "on the table" could be combined to yield a complete verb phrase, but 
where the nounphrase and the prepositional phrase could also be combined to 
yield a nounphrase "the book on the table". If the sentence ends at that point, as 
in a, below, then this "local" parsing ambiguity is resolved in favour of the former 
analysis. However, if the sentence continues as in b, then the latter analysis, 
in which "on the table" modifies the noun-phrase rather than the verb-phrase, is 
available, and in fact preferred. (Another analysis is possible, so this sentence is 
said to be syntactically "globally" ambiguous ). 

(1)    a. Put the book on the table. 
b. Put the book on the table in your pocket. 

C: THE RELEVANCE OF COMPUTATION 

Computer Science provides a rich source of models for theories of all three mod- 
ules of the human processor, drawing not only on the manner in which similar 
modules are treated in constructing compilers and interpreters for artificial pro- 
gramming languages, but also work within the Artificial Intelligence paradigm. 
This work provides both theories and working examples of the way in which 
syntactic processing, semantic processing, and referential processing can be in- 
terleaved and may in very restricted senses interact during processing. This has 
been made possible by the development of computational systems for knowledge 

'The division of labour in processing between a non-deterministic algorithm and and an oracle 
is not always made explicit, particularly in implementations. However, we shall see that all 
sentence processors can and should be viewed in this way. 



representation and inference within AI, which have provided notations for the 
contextual and domain-specific knowledge involved in linguistic comprehension. 

The contribution of AI Knowledge Representations is at least as important as 
that of compiler theory, for we should be clear at the outset that in many ways pro- 
gramming languages are strikingly unlike their natural counterparts. Programming 
languages typically have tiny grammars by comparison with human languages. 
Compilers typically cope with very complex expressions, and are required to be 
"complete" - that is, to guarantee a correct analysis for any legal expression of 
the language. Human processors, on the other hand, deal with expressions that 
are structurally rather simple. And there is every indication that the human parser 
is in syntactic terms very far from complete. The most obvious evidence for 
incompleteness is the well-known apparent non-parsability of "center-embedded" 
sentences such a, below, in comparison with their "right-embedded" relatives like 

b: 

(2) a. The rat the cat the dog bit chased escaped. 
b. This is the dog that bit the cat that chased the rat that escaped. 

The difficulty of a has widely been supposed to arise from some limitation in the 
size of working memory - say from a bound on the size of the push-down stack 
that is characteristic of context-free grammars, and whose use is crucial in the case 
of center-embedding.2 

Even more striking evidence of incompleteness arises from certain well-known 
"garden-path" sentences first noted by Bever. Example a, below, includes a 
lexical ambiguity which leads the processor so seriously astray that naive subjects 
are typically unable to identify any analysis for a sentence with which they would 
otherwise have no trouble, as shown by the syntactically identical b: 

(3) a. The horse raced past the barn fell, 
b. The horse driven past the barn fell. 

II: COMPUTATIONAL THEORIES OF PROCESSING 

interestingly, this very old suggestion has never been really successfully formalised, and 
recent work by Gibson 1994, in press suggests that the catastrophic effect in a, above, is due 
to center embedding within subjects, rather than center-embedding alone. Niv 1993 cites the 
increased acceptability of examples like "a book that some Italian I've never heard of wrote will 
be published next week" (which he attributes to B. Frank) to suggest that the effect stems from an 
interaction of subjecthood and other discourse factors related to definiteness. 



A: THE GRAMMAR 

1: COMPETENCE AND PERFORMANCE 

The Grammar that we have identified as a component of the processor above is 
clearly a module of the "Performance" system, rather than of "Competence", in 
the linguist's sense of those terms. When we contemplate the human processor 
as a whole, we should be aware that this performance grammar is conceptually 
distinct from the competence grammar that the linguist provides. In fact there is 
no logical necessity for the structures that the processor builds to have anything 
to do with the structures that are implicated by the competence grammar - that is, 
the structures that are required by the semantics (and the linguist). As Berwick 
and Weinberg 1984, esp. p.78-82 have noted, the processor can in principle parse 
according to a grammar that is quite different from the one that is most directly 
related to the semantics, provided that there exists a computable homomorphism 
mapping the structures of this "covering grammar" onto the structures of the com- 
petence grammar. If the homomorphism is simple, so that the computational costs 
of parsing according to the covering grammar plus the costs of computing the map- 
ping are less than the costs of parsing according to the competence grammar, than 
there may be a significant practical advantage in this strategem. For this reason, 
it is quite common for compilers and interpreters to parse according to a weakly 
equivalent covering grammar, mapping to the "real" grammar as defined by the 
reference manual via a homomorphism under concatenation on a string represent- 
ing the derivation under the covering grammar. This strategem has sometimes 
been used in programming language compilers, when a parsing algorithm that is 
desirable for reasons of efficiency demands grammars in a normal form that is not 
adhered to by the grammar in the reference manual. Such a tactic has also been 
used in at least one early artificial parser for natural languages, in which it was 
necessary to use a top-down algorithm, which as we shall see below is ill-suited 
to the left recursive rules which commonly occur in natural grammars. 

Nevertheless, considerations of parsimony in the theory of language evolution 
and language development might also lead us to expect that, as a matter of fact, 
a close relation will turn out to hold between the competence grammar and the 
structures dealt with by the psychological processor, and that it will in fact incor- 
porate the competence grammar in a modular fashion. One reason that has been 
frequently invoked stems from the fact that language development in children is 



extremely fast. This speed in turn suggests that it proceeds via the piecemeal 
addition, substitution and modification of individual rules and categories of com- 
petence grammar. However, the addition of, or change to, a rule of competence 
grammar will not in general correspond to a similarly modular change in a cov- 
ering grammar. Instead, the entire ensemble of competence rules will typically 
have to be recompiled into a new covering grammar. Even if we assume that 
the transformation of one grammar into another is determined by a language- 
independent algorithm, and can be computed each time at negligible cost, we have 
still sacrificed parsimony in the theory, and increased the burden of explanation 
on the theory of evolution. In particular, it is quite unclear why the development 
of either of the principal components of the theory in isolation should confer any 
selective advantage. The competence grammar is by assumption unprocessable, 
and the covering grammar is by assumption uninterpretable. It looks as though 
they can only evolve as a unified system, together with the translation process. 
The evolution of such a system is likely to be much harder to explain than that of 
a more directly competence-based system. 

Indeed the first thing we would have to explain is why a covering grammar was 
necessary in the first place. The reference grammars of programming languages 
and the competence grammars of natural languages have syntaxes that are ill-suited 
to parsing with our favourite algorithms because they are constrained from outside 
by our own requirements. It is we who find Greibach Normal Form tedious, and 
find grammars with left recursive rules congenial, forcing the use of covering 
grammars by some artificial processors. It is quite unclear what comparable 
external force could have the effect of making natural grammars similarly ill- 
matched to the natural sentence processor.3 

3The natural processor could certainly require grammars to be in some normal form. However, 
provided that the normal form is a class of grammars of the same automata-theoretic power that the 
semantics of the language requires (and therefore of the same power as the competence grammar), 
we would expect that normal form to simply be a characteristic of the grammars we observe. In 
other words, we would view it as a (processing-based) constraint on the form of the competence 
grammars that actually exist. It is even less easy to believe that a covering grammar could be forced 
by the sentence processing mechanism being of intrinsically lower automata-theoretic power than 
the competence grammar. We would first have to ask ourselves how these two systems which 
by assumption have completely different automata-theoretic character could begin to talk to one 
another in the first place. We should then have to ask ourselves whether it would not be simpler 
for evolution to bring the processor up to the automata theoretic level of the competence grammar. 
After all, such a mechanism has already been evolved once, in the form of the interpreter for the 
semantics. 



For similar reasons, we should expect that the syntactic categories and rules 
of the competence grammar will stand in the closest possible relationship to the 
categories and rules of a compositional semantics, in which the interpretation of 
complex expressions is wholly determined by the interpretation of their component 
parts, and where the assembly of semantic interpretations can be carried out 
in lock step with syntactic derivation. Since the sole purpose of syntax is to 
identify semantic interpretation, anything else seems to pointlessly complicate the 
problems of evolution and acquisition 

We shall therefore in the remainder of the chapter adopt the assumption that 
the grammar that is used by or implicit in the human sentence processor is the 
competence grammar itself, a position that Bresnan and Kaplan (1982) have named 
the "Strong Competence Hypothesis". To adopt this position is not to assume that 
linguists will have had the foresight to provide their grammars in the form in which 
we need them to make predictions on the basis of this hypothesis, or even that 
any of the (disturbingly numerous) alternative formulations are entirely correct. 
However, the fact that our access to the underlying semantic representations is 
very limited indeed, and the fact that there are so many possible parsers for each 
grammar both mean that the linguists' methods for studying competence grammar 
remain an essential aid. Indeed, in the history of the formal theory of natural 
grammar, linguists and computationalists have seemed like mountaineers roped 
together on a mountainside, each in turn helping the other towards the summit. 

2. COMPUTATIONAL THEORIES OF GRAMMAR 

A. THE CONTEXT-FREE CORE: TO talk about this collaboration we need a notation. 
We will start with a computational notation for grammars called "Definite Clause 
Grammars" (DCG). This notation is convenient both because it is so close to 
Phrase Structure Grammar and because it is directly compatible with a useful 
computational device called "unification", which we can use to build derivations 
or even interpretations very simply indeed. A DCG for a fragment of English 
might begin with rules that we can write as follows: 

(4) S : vp np\ ->        NPagr ■ np\ VPagr ■ Vp 

VPagr '■ iv -*     VlNTR,agr '■ iv 

VPagr : tv np2 -*■     VrRAN,agr '■ tv NP : np2 

NPSING :pnei -*■    PNSING ■ pn 
Pagr ■ (q e2){n e2) -+      DETagr : q -**agr • '*' 

In this notation, the familiar PS rules such as S -> NP VP are expanded as in 



the first rule to include interpretations. Thus an expression of the form S : vp npl 
denotes a grammatical category of syntactic type S (a sentence) and semantic 
interpretation vp npl, in which the variable vp is a predicate that is applied to 
an argument npl. Whenever possible, we shall abbreviate such categories as S, 
etc. In the first rule, both vp and npl also occur as the interpretations of two 
subconstituents of type NP and VP. Subscripts on symbols like VINTR and VTRAN 

are a convenient notation for categories that we want to think of as bundles of 
feature-value pairs, like ±transitive. Features with lower case, as in NPagr, are to 
be read as variables, or feature-value pairs with unbound values. Corresponding 
unsubscripted categories like NP are to be read as categories whose value on its 
features is irrelevant to the application of the rule. 

We pass over the details of the actual semantic types of variables like iv, tv, 
pn, and q, except to note we are assuming that they range over higher-order types 
of the kind familiar from the work of Montague 1974, so that the latter two are 
varieties of what are called "generalised quantifiers", binding the variables en 

which range over entities in the model or database, and that the former two are 
even higher types. The important thing to note about this semantics is that it is 
completely integrated into the syntactic rules, and that interpretations can therefore 
be assembled simultaneously with syntactic analysis. 

Rules written as in 4 leave the string order of subconsituents on the right of a 
rule, such as NP and VP in the first rule, implicit under an obvious convention 
in the linear order of those symbols on the page. An alternative notation which 
makes linear order explicit, but which is in other respects very similar to DCG 
grammars is that of Augmented Transition Network grammars (ATNs, Woods, 
1970), which we can think of as replacing groups of one or more DCG rules by 
a finite automaton, where each automaton can "call" the others recursively. The 
earlier DCG rules might be written as in Figure 1.4 

Like the PS rules that they resemble, the rules in either notation can be applied 
top-down ("To find a sentence meaning S : vp npl, find a noun-phrase meaning 
npl to the left of a verb phrase meaning vp") or bottom-up ("If you find a noun- 
phrase meaning npl to the left of a verb phrase meaning vp, make them into 
a sentence meaning S : vp npl"). However, it is important to remember that 
both DCGs and ATNs are grammars not parsers, and can be fitted up with any 

4This notation differs considerably from Woods' own in a number of respects. The original 
ATN grammars packed as many PS rules as possible into each network, so produced "flatter" 
grammars than this example suggests. In effect they used a covering grammar, to make life easy 
for the algorithm. 



NP   :np —- VP        : vp 
agr       1 f       \ agr 

so   ) H  si 

0VRa    :vp .—. 

 ■ ■/   S2   J    => S:vpnp 

*^, -\   VP2 .    VP      :tv np 

N1*3 )    => NP      :(qe )(ne) 
agr        2        2 

Figure 1: An ATN Grammar 

algorithm/oracle combination we like. 
Whichever notation we use, and however the algorithm applies the rules, a 

mechanism called "unification" can be used to ensure that the S that results 
from a successful analysis of a given string is associated with the appropriate 
interpretation.5 

Informally, unification can be regarded as merging or amalgamating terms that 
are "compatible", and as failing to amalgamate incompatible ones, via an algorithm 
that "instantiates" variables by substituting expressions for them in one or other 
of the expressions.6 For example, the following pairs of terms unify, to yield the 

5The historical ATN grammars in fact associated explicit "register-changing" rules with tran- 
sition networks to achieve the same effect of information-passing. Again, the distinction is 
unimportant for present purposes. 

6More technically, the result of unifying two compatible terms is the most general term that is 
an instance of both the original terms. 



results shown:7 

(5) x A =>• A 
F(GA) x => F(GA) 
Fx F{Gy) =► F(G^) 
(FA)* (Fy)y =* (FA)A 

The following pairs of terms do not unify: 

(6) A B =► /at/ 
Fa; Gy =*> /ai7 
(FA)5   (Fy)y   =>    /at/ 

For example, suppose the lexicon tells us that the word "Harry" bears the cate- 
gory NP : HARRYei, and suppose that "walks" has the category VP : WALKS.,8 

If we find the word "Harry" to the left of the word "walks", it follows that we 
can unify this sequence of categories with the right hand side of the first rule in 4. 
This has the effect of replacing the variable vp by WALKS and the variable np\ by 
HARRY e\ throughout the rule. The resulting S is therefore associated with the 
expression WALKS (HARRY ej). The derivation, in which the unification does the 
work of a compositional semantics, can be represented by the usual sort of tree 
diagram as in Figure 2.9 In fact, there is a little more to it than this: the variable 
or undefined value agr on the syntactic categories NPagr and VPagr in the rule 
also got bound to the value 3SING by the unification. Had the subject and verb 
born different values on the agreement feature, as in the following illegal string, 
the unification, and hence the whole derivation, would have failed: 

(7) *Harry walk 

Thus we have the rudiments of an account of linguistic agreement.  Of course, 
it isn't a very good account. In a more complete fragment of English we would 

7It should be noticed that the unification of two variables is a "new" variable, distinct from either. 
It should also be noticed that nodes in trees, terms, and variables are, under this interpretation, 
pointers to data structures, and unification makes two pointers point to the identical data structure. 
Strictly, therefore, interpretation structures are directed acyclic graphs, rather than the trees that 
the present notation suggests. 

8The distinguished variable t\ ranges over individuals in the discourse model, which we can 
think of as a database of facts. 

9As in the case of syntactic categories like NPOSING, we assume that symbols like WALKS 
in interpretations are merely place-holders for more complex terms separating tense, aspect, verb- 
sense etc. 



S: WALKS (HARRY e ) 

NP : HARRY e VP        : WALKS 
3SING 1 3SING 

Harry walks 

Figure 2: A DCG derivation 

want to further unpack the feature agr and its values like 3SING into a bundle 
made up of a number of features like num (number) and per (person). Linguists 
would probably point out that some phenomena of agreement appear to be most 
parsimoniously described in terms of disjunction of feature-value pairs, a fact 
which may suggest we need a more refined representation altogether. However, 
these refinements are of less interest for present purposes than the observation 
that we have here the beginnings of a very simple account of a phenomenon that 
in the early days of generative grammar was thought to require Aspects-style 
transformations, a very powerful class of rule indeed. 

The interpretation that is delivered by the above derivation is closely related 
to the derivation tree itself. The observation generalises to other derivations that 
are permitted. This fact suggests that what we have so far developed is merely a 
computationally convenient form of context free grammar, "slaved" via unification 
to a device that builds interpretation structures as derivation proceeds, an idea that 
seems to originate with Kuno in the sixties. This is a helpful way to think about 
the processor, but some caution is in order. We have so far been quite vague about 
the unification mechanism, and in particular about the types of values that features 
may bear. In particular, if we allow the values to be lists, then we shall change 
the automata-theoretic power of the grammar (which may of course be what we 
want). Completely unrestricted feature systems can also threaten the tractability 
of the parsing problem (cf. Barton, Berwick and Ristad 1987). 

With this notation in place, we can begin to look at more complex constructions. 
It is convenient to collect these into three classes. The "bounded" constructions, 
which include many phenomena that were originally thought to require transfor- 
mations, are those which relate argument positions within a single tensed clause. 
These constructions are to be contrasted with "unbounded" constructions, such as 
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relativisation, which can relate elements of sentences across one or more clause 
boundaries. The unbounded constructions can be divided into "well behaved" 
constructions, like relativisation itself, and "less-well-behaved" constructions, no- 
tably including coordination. The computational implications of this last class are 
a topic in their own right, and will only be very briefly touched on below. It is the 
first two classes that have received most attention, both from linguists and from 
computational linguists. 

B. BOUNDED CONSTRUCTIONS: All languages of the world appear to include 
devices, usually morphologically marked, which affect the mapping between se- 
mantic predicate argument relations and linear order and/or surface case of the 
corresponding expressions in the sentence. An example in English is afforded by 
the contrast between active and passive morphology, which produces clauses in 
which the semantic object is respectively realised as accusative or sentence final, 
and nominative, or sentence initial. 

(8) a. I like Dee. 
b. Dee is liked. 

Others relate the same surface argument expression to more than one semantic 
argument role, and sometimes to arguments of different verbs standing in a se- 
mantically subordinating relation, as in morphological reflexivisation, or various 
raising or control constructions, as in the following English example: 

(9) I persuaded Dee to leave. 

The languages of the world show very striking similarities in the range and type 
of such constructions that they offer. To capture and explain these regularities is 
a major goal of contemporary linguistic research. 

All of these constructions share an important distinguishing property called 
"boundedness". That is to say that the semantic arguments whose relations to 
surface grammar these constructions determine must either be involved in the 
same proposition (as in the case of the passive and morphological reflexivisation), 
or in a proposition and an immediately subordinate complement proposition, as in 
the last example. 

The bounded and structure-preserving properties of these constructions imme- 
diately suggest that they should be handled in the context-free base component of 
the grammar, as proposed in the ATN framework by Woods, 1970. Many modern 
theories of syntax make a related assumption, which goes by the name of the "Base 
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Generation Hypothesis" (cf. Brame 1978). In the DCG notation we can capture 
the idea as follows:10 

(10) VP : ocv (vpy) y   -+   Voc : ocv   NP : y   VPto-inj ■ vp 

Another very natural way to interpreting Base Generation is to capture the bounded 
constructions in the lexicon - that is, in the subcategorisation frames for object 
control verbs and the like. This is the tactic that is adopted in Categorial Grammar 
(CG, Oehrle et al. 1988), Lexical-functional Grammar (LFG, Bresnan 1982), 
certain versions of Tree-Adjoining Grammar (TAG, Joshi et al. 1991), and Head- 
driven Phrase-structure Grammar (HPSG Pollard and Sag 1994). 

A DCG grammar expanded in this way continues to be closely related to Woods' 
ATN analysis of the bounded constructions, with unification again doing the work 
of "Register Modification". The fact that both the ATN and the DCG work 
exclusively at the level of argument structure or the interpretations of immediate 
constituents goes a long way towards explaining the bounded character of these 
constructions. This benefit of the computational approaches has become standard, 
and is implicit in nearly all linguistic theories of the constructions, including 
GPSG, HPSG, LFG, Lexicalised TAGs, and certain versions of Government- 
Binding theory (GB, Chomsky 1981). For this reason, we shall have little more 
to say about the bounded constructions here, except to note that this is one place 
where computational linguistics has directly influenced mainstream linguistics and 
psycholinguistics (see Bresnan 1978 for further discussion of the relation between 
linguistic accounts and the ATN.) 

c. UNBOUNDED CONSTRUCTIONS: The languages of the world show similar con- 
sistency in respect of another family of constructions. These are known as "un- 
bounded", because they involve dependencies at the level of the interpretation or 
argument structure between expressions which may be separated by unboundedly 
many intervening elements. Examples in English are relativisation, wh-question 
formation, topicalisation and, arguably, right node raising, exemplified in 11 be- 
low: 

(11) a. People that... I like. 
b. People, .. .1 like! 
c. I like, and .. .you merely tolerate, people who own cats. 

10As usual, the interpretation here is highly simplified, and all the real work is being done by 
the translation ocv of the object control verb. A linguist would foresee a problem for the Binding 
theory in this particular representation, which we pass over here in the interests of brevity. 
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For each of these expressions, an infinite number of further well formed expres- 
sions of the same type can be generated by recursively inserting instances of the 
string "O'Grady says that..." in place of "...". It follows that the verb like can be 
unboundedly distant from the head noun people of its semantic object argument. 
While there are a number of patterns of relativisation across languages, including 
cases where the relative pronoun is either in situ with the verb, or is omitted 
entirely, in all languages such constructions involve an unbounded dependency.11 

These constructions seem quite different from those that we encountered in the 
last section. We cannot build the argument structures needed for semantic inter- 
pretation merely by identifying elements in translations of immediate constituents 
in a context-free rule, since in general the elements related by the dependency 
cannot be elements belonging to a single CF rule. 

All approaches to the unbounded dependency exhibited by constructions like the 
relative take the form of a context-free core, augmented by some extra apparatus 
for handling the unbounded dependencies themselves. Many of the interesting 
contrasts between the theories concern the automata-theoretic power that such 
extensions implicate. Although we have no very clear information concerning an 
upper bound on the power of human grammar, mechanisms of lesser power than 
a Turing machine clearly have considerable theoretical interest, if only to show 
where they break down. 

Linguistic and computational theories of this "weakly non-context-free" kind 
have broadly fallen into two categories. The first type can be characterised as using 
the context-free base to determine an argument structure for an entire complex 
sentence, then using additional apparatus to establish long range dependencies in 
one fell swoop. An example is Aspects-style transformational grammar, which 
introduced tree-to-tree rules including variables in order to transform arbitrarily 
deeply embedded trees with wh-items in situ into trees with those items fronted. 
The other type of mechanism established long-range dependencies by "trickling" 
pointers or indices down a path through the derivation tree connecting the two 
dependent elements. 

Aspects-style rules themselves were quickly identified as implicating full Turing 
machine power (Peters and Ritchie 1973). They also failed to explain a number of 
asymmetries in extractability of different arguments, of which a striking example 
is the "Fixed Subject Constraint", which describes the fact that in English and 

1' Some of these possibilities are actually exhibited in restricted forms in English, in pronoun-free 
relatives and multiple wft-questions. 
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Figure 3: The ATN HOLD mechanism 

many other SVO languages, subjects cannot unboundedly extract, unlike other 
arguments, as illustrated in the following example:12 

(12)    a. A man who(m) I think that Ike likes, 
b. *A man who(m) I think that likes Dee. 

For both of these reasons, there was considerable interest in certain computational 
versions of the swoop mechanism that appeared to be more constrained. Following 
early work by Thorne and Bobrow, the idea was most elegantly formulated by 
Woods 1970 for the ATN. 

Woods' ATN allowed certain kinds of register-changing side-effects to be asso- 
ciated with state-transitions. Most of Woods' register-changing operations have 
up till now been subsumed under the unification mechanism. However, to handle 
long-range dependency, we shall associate such actions with a number of tran- 
sitions that we shall add to the NP and VP nets in Figure 1. These actions will 
transfer special terms or markers into and out of into a special globally accessible 
register or store called HOLD, extending the grammar as in Figure 3. The actions 

12Subjects of bare complements, as in "a man who(m) I think likes Ike" are exceptional in this 
respect. 
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concerning the HOLD register are enclosed in braces. They allow the grammar 
to achieve the same effect as a swoop transformational rule. To derive a relative 
clause, you simply use the ordinary rules of context free grammar, except that 
whenever you encounter a relative pronoun, you make it one end of a potentially 
unbounded NP dependency, expressed as a note in the HOLD register, and when- 
ever a verb needs an NP argument, it has the option of satisfying the need for that 
argument and making it the other end of an unbounded dependency by retrieving 
an NP from HOLD.13 

Part of the attraction of the ATN HOLD mechanism is that it offers a way to 
think about constraints on long range dependencies. For example, because we do 
not include the option of the subject being obtained from the HOLD register, we 
capture the Fixed Subject Condition illustrated in 12.14 

Furthermore, the fact that sentences like 13, a below involve more than one 
dependency, and that those dependencies nest, as revealed by b, can be explained 
as arising from limitations on the HOLD store - perhaps that it is a push-down 
stack, as suggested by Woods 1973:15 

(13)    a. Which violin i is this sonata2 easy to play2 onj 
b. * Which sonatai is this violiri2 easy to playi 0112 

The importance of this latter observation is considerable. When one sees a 
stack, one immediately thinks of a characteristic automaton, such as the push- 
down automaton (PDA) that is characteristic of context-free grammars. Since a 
push-down store is already implicit in the context-free rules, and since adding a 
further stack to mediate long range dependencies would in principle jump us up to 
full Turing machine power, the intriguing possibility is that the stack involved in 
long-range dependencies is in some sense the same stack involved in context-free 
rules, as proposed by Ades and Steedman 1982, p.522, and as further specified in 
the work of Joshi et al. discussed below. 

Of course, to claim this much is not the same as claiming that natural languages 
are context-free. We know from work by Aho 1969 that a "nested stack" au- 
tomaton, equipped with a single stack whose contents may themselves be stacks, 

13A further check that the index has indeed been removed from HOLD is included on exit from 
the complex NP, in order to prevent overgeneralisation to examples like *A man that I like Ike. 

14A linguist would notice, however, that nothing in the present theory explains why this constraint 
appears to conspire with other aspects of word-order, cross-linguistically. Nor have we revealed 
how bare complement subject extraction is allowed. 

15The example originates with Janet Fodor. 

15 



is of greater than context free power (but of lesser power than context sensitive 
grammars). However, it does suggest that we should try to account for unbounded 
dependencies in much the same way we accounted for bounded ones, by putting 
as much of the work as possible into the base rules themselves. This insight can be 
seen as underlying the second group of mechanisms for unbounded dependencies, 
in which a similar kind of pointer or index is "trickled" down the sentence during 
derivation, as opposed to being established in one fell swoop. 

Within mainstream linguistics, this kind of explanation can be seen as surfacing 
in proposals by Bresnan and Chomsky which resulted in the "comp-to-comp move- 
ment" account of unbounded dependencies including relativisation. According to 
this theory, unbounded dependencies were the sum of a series of local dependen- 
cies between argument positions and the complementiser position in individual 
clauses. Thus transformational "movement" was restricted to bounded movement. 

Since we have seen that bounded dependencies can be captured within gener- 
alised PS rules, it should be clear that it is a comparitively short step to grammars 
which eliminate movement entirely, and bring unbounded dependencies under the 
Base Generation Hypothesis. The proposal takes an extreme form in the Gen- 
eralised Phrase Structure Grammars (GPSG) of Gazdar et al. 1985. The GPSG 
treatment can be included in our DCG rules by associating a feature-value pair 
SLASH, equivalent to a local HOLD register. In the original version of the theory, 
the value of this feature was simply a pointer identifying a unique long range 
dependency, and the theory was therefore weakly context free. The original base 
set of rules for each category such as S are included again with an empty slash 
feature. It is convenient to write such categories simply as 51, NP, VP, etc, and 
to write the corresponding categories in which the SLASH pointer is of type NP 
as S/NP, NP/NP, VP/NP, etc. For every old style rule defining "non-slash" 
categories, there may be one or more rules which specify how an S/NP with 
non-empty SLASH feature passes that feature to its offspring. For example, we 
might introduce the following additional rules, among others:16 

(14) S : vp npl/NP : x —      NPagr : np\      VPagr : tv x/NP : x 
VPagr ■ tv nP2/NP : x     -►    VTRANW :tv      NP: npl/NP : x 

NPagr ■ {q e2)(p&(n e2))    —      DETagr : q Nagr : n RELPRO    S : p/NP : q0 e2 

The category NP/NP corresponds to the linguists notion of a trace or empty 
NP. We have again slyly captured the constraint upon extracting subjects by not 

16In the original version of the theory, such extra rules were induced via "metarules". 
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including a rule of the form S/NP -* NP/NP VP. The multiple unbounded de- 
pendencies exhibited in sentences 13 could be handled within this type of GPSG, 
by a combination of the techniques we have seen for bounded and unbounded 
dependencies. However, the multiple intersecting unbounded dependencies that 
occur in Scandinavian languages and the arbitrarily many verb-argument depen- 
dencies that can intercalate in Germanic infinitival complements provide evidence 
that natural languages cannot be contained within the class of CF languages (see 
Gazdar 1988 for discussion). A number of other grammar formalisms with a com- 
putational orientation were developed in response to such observations, including 
Tree-Adjoining Grammars (TAG, Joshi et al 1991) and Combinatory Categorial 
Grammars (CCG, Ades and Steedman, 1982), and Gazdar's proposal to permit 
SLASH features to be stacks (cf. Gazdar 1988, Pollard and Sag 1994). Joshi 
et al. 1991 showed that a number of these grammars were weakly equivalent to 
indexed grammars, and that under certain limiting assumptions to linear indexed 
grammars, in which only a single stack-valued feature is involved. 

D. LESS WELL-BEHAVED CONSTRUCTIONS: Before leaving the topic of grammar, 
it should be remarked that there remain a number of constructions that are much 
less well-behaved with respect to both linguistic and computational theories of the 
kind we have discussed so far. Coordination, Parentheticalisation, and Intonational 
Phrasing, all appear to operate upon a very wide range of fragments that bear 
very little resemblance to traditional constituents, while remaining subject to very 
strong and apparently syntactic constraints. The seriousness of the problems which 
examples like the following present for both the theory of competence grammar 
and the possibilities of efficient processing are an enduring problem that should 
not be underestimated: 

(15)    a. I will buy, and may read, your latest novel. 
b. Give Dead-eye Dick a sugar stick, and Mexican Pete, a bun 
c. Harry likes Adlai, and Mike, Lee 

The lack of truly explanatory coverage of such examples suggests that there may 
be more to say about the computational nature of the competence grammar than 
we have been able to consider here.17 

17I address this question elsewhere - see Further Reading, below. 

17 



B: THE ALGORITHM 

1: NATURAL AND UNNATURAL ALGORITHMS 

The parsing algorithms that have been developed for the purpose of compiling and 
interpreting programming languages come in a bewildering variety, each distin- 
guished from the others on a number of parameters. The parameters determine 
the order in which the space of parser-states is searched, the manner in which the 
rules of the grammar are applied (top-down, bottom-up, or a mixture of the two), 
and in the use of various auxiliary "tables" or "charts" to increase efficiency. 

The extent to which we can distinguish these devices empirically as models of 
the human parser is very limited, partly because of residual uncertainties about the 
nature of the competence grammar itself, but mostly because of their considerable 
dependency upon the third module of the processor, the oracle. We have already 
noted that these algorithms have been developed for languages very unlike our 
own, with no global ambiguity and very limited nondeterminism, so this result is 
perhaps not surprising. Nevertheless, these algorithms remain the sole source for 
models of the human algorithm, and it is important to understand the consequences 
of variation along each of these dimensions. 

The appeal of the Strong Competence Hypothesis lies in the observation that it 
is evolutionarily and developmentally simpler to keep to a minimum the apparatus 
that the parser demands over and above the competence grammar itself. A parsing 
algorithm that requires a great deal of "extra" apparatus - particularly when 
that apparatus is language-specific - therefore tends to be less plausible as a 
candidate. However, the algorithm must, given a natural competence grammar 
and the assistance of an oracle, be capable of parsing efficiently. An algorithm for 
which natural grammars appear to induce inefficiency, or for which we find it hard 
to identify an effective oracle, will also appear implausible. We shall find that at 
first glance all the algorithms score rather badly for psychological pausibility on 
one or other of these criteria. 

All of the algorithms that are discussed below were in the first instance defined 
for context-free grammars and the associated push-down automaton, since that 
is the effective level of the grammar for most programming languages. Indeed, 
the desire to exploit these algorithms, and therefore to keep to a minimum the 
additional apparatus required to deal with the apparently non-context-free prop- 
erties of natural languages, was a major impulse behind the development of the 
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computational alternatives to grammatical transformations discussed in the earlier 
i o 

section on competence grammar.10 

2. PARSING AS SEARCH 

We can view the workings of the nondeterministic algorithm as a search problem, 
in which the task is to find all paths through a maze to the exit(s) corresponding to 
succesful parser terminations. The choice points in the maze where more than one 
path can be taken correspond to states of the parser in which the grammar allows 
more than one continuation, and the transitions between parser states correspond 
to actions such as reading another word or applying a rule of grammar. 

The complexity of a parsing algorithm - that is, the relation that the number 
of computational operations and the amount of working memory required bear to 
the length of the sentence under analysis - depends on the characteristics of this 
search space. The maze may be built on a chain of "islands", so that all paths 
pass through certain "bridges" or "bottlenecks" corresponding to the same state, 
so that all overall paths share the same analysis or analyses on each island. If so 
the algorithm may be able to "share" these analyses. If the paths through the maze 
never cross then this saving will be impossible. Some paths through the maze are 
dead ends. Some paths are endless, leading neither to success nor to a dead end. 
These the parser should try to avoid. 

If paths never cross, the search space can be viewed as a tree. There are two 
basic methods of searching trees. If the tree has 6 branches at each branching 
point, we will refer to b as the "branching factor". (More realistically, since the 
degree of non-determinism at a branch-point may vary, we should think of the 
branching factor b as the average number of branches that do not immediately 
succeed or fail.) 

One way to search the tree is to work "breadth first", starting at the root, looking 
at the first branches to see if they lead to success states, or if they are dead 
ends, and otherwise iterating over all the successor states. This search clearly 
has exponential costs both in terms of the number of alternatives that must be 
examined (and hence time), and in terms of the memory we need to keep track of 
the bn alternative states on the "frontier" of the search. 

18The "weakly non-context free" grammars discussed at the and of that section have a charac- 
teristic automaton called an "extended push-down automaton". The classic algorithms discussed 
below, such as Earley's, generalise quite directly to this automaton. 
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Another way is to work "depth-first", choosing one branch from the root (say the 
leftmost, or the "best" under some criterion), and then choosing from its successors 
by the same criterion. Whenever you reach a success- or failure- point, you back 
up to the last choice-point, and take the next -leftmost (or -best, or whatever) 
alternative. This regime also takes exponential time in the depth of the search 
(although its memory requirements are only order n, because it only needs to keep 
the n states on the path back to the root). 

Clearly, the greater the nondeterminism induced by the grammar, the more 
complex the maze and the larger the number of wrong alternatives leading to blind 
alleys. 

We have already noted that a huge degree of nondeterminism appears to be 
characteristic of all natural languages. A lower bound estimate of what we are up 
against can be obtained by observing that the branching factor b must be at least 
as great as the average lexical ambiguity, and the depth n of the search tree must 
be at least as great as the number of words in the sentence. (This lower bound is 
over-optimistic, since it takes no account of structural ambiguity). It follows that 
exhaustive search is likely to be unacceptably costly in computational terms. Nor 
should we expect parallelisation of our search algorithm to solve this problem. 
For any fixed n we can in principle make the search linear in n by providing bn 

processors. But this number is also exponential in n, and is impracticably large 
for the range involved here. 

As with all arguments from worst-case complexity, caution is in order here. The 
effective branching factor b may be smaller than we think, say because the search 
space has islands in the sense mentioned earlier. Moreover, n is quite small for 
natural sentences - on the order of 20 for written text. We shall see that within 
such bounds an exponential algorithm may perform better than a polynomial one. 
Nevertheless, even before we start to consider particular algorithms in detail, it is 
likely that we shall find ourselves in the same position as large search problems 
like chess-playing - that is, of having to adopt heuristic search strategies to narrow 
the effective branching factor. In the case of sentence processing, the heuristics 
must identify with high reliability the alternative at each point that will in fact lead 
to an analysis. While some less favoured alternatives may be stored for later use 
in case of failure, we may be forced to adopt a "best-first" version of depth-first 
search. Such methods are likely to be incomplete - that is, there may well be 
sentences that are allowed by the grammar, but for which our algorithms will fail 
to deliver analyses, or alternative analyses for ambiguous sentences that they will 
fail to detect. 
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This will come as no surprise. We have already noted that human processors 
are rarely aware of global ambiguities. We have also seen in the case of subject 
center-embedded sentences like 2 and garden-path sentences like 3 that both 
the psychological algorithm and the psychological oracle are incomplete. The 
significance of this observation for the nondeterministic algorithm is that individual 
algorithms differ in where they make the exponential costs show up, and in what 
particular problems they leave for the oracle to solve. 

3: LEFT-TO-RIGHT PROCESSING 

A further dimension of variation for the algorithm concerns the order in which the 
words in the string are examined. In nearly all cases they are examined in order 
of utterance from first to last, usually referred to as "left-to-right".19 While this 
regime has an obvious intuitive appeal, it is worth noting that regardless of other 
details, one wants the parser to examine the most informative items earliest, in 
order to limit uncertainty, and that it seems to be an empirical fact about English 
and other languages that leftmost boundaries are much less ambiguously marked 
than right. 

There is one exception to the standard left-to-right regime in modern natural 
language processors. Under a similar rationale of starting with unambiguous 
information, in tasks involving text derived via speech processing or other sources 
of noise and error, it is sometimes expedient to begin anywhere that yields a 
comparatively unambiguous analysis. This regime is know as "Island-driven" 
parsing. 

4: SIMPLE BOTTOM-UP VS. SIMPLE TOP-DOWN 

A. SIMPLE BOTTOM-UP: The simplest bottom-up nondeterministic algorithm is 
often referred to as the "Shift-reduce" algorithm, because it is defined in terms of 
two processes of "shifting", or pushing a category onto the stack of the push-down 
automaton, and "reducing", or combining categories on top of the stack according 
to a grammatical rule.20 In its most general form, the algorithm can be defined 
in terms of the stack of the PDA (which initally is empty), and a buffer (which 

19This term of course assumes an English orthography. We shall follow this lamentably chau- 
vinistic terminology without comment from now on, because the alternatives are so cumbersome. 

20Confusingly, the term "bottom-up" is sometimes used to refer to what is discussed below as 
the "left-corner" algorithm, while the term "shift-reduce" is sometimes used to refer to a particular 
kind of deterministic shift-reduce algorithm discussed below as the LR(k) algorithm. 

21 



initially contains the words of the sentence in order),as follows: 

(16) While the buffer and the stack are non-empty, EITHER: 

1. If the topmost items on the stack match the right-hand side of a pro- 
duction rule, remove them from the stack, REDUCE them according 
to the rule, and place the result on top of the stack, OR: 

2. remove the next word from the buffer, and SHIFT its grammatical 
category to the top of the stack. 

Any empirical predictions from such a minimal algorithm must wait for the dis- 
cussion of possible oracles that will determine which of these actions is preferred 
is states when both are possible, but we can make the following general remarks. 

First, we should note that the non-determinism of this algorithm is of three 
distinct kinds, which we can refer to as SHIFT/SHIFT conflicts (which arise 
when a lexical item has more than one grammatical category), SHIFT/REDUCE 
conflicts, and REDUCE/REDUCE conflicts (when more than one rule can apply). 

Second, the simple bottom-up parser is entirely non-predictive. This threatens 
efficiency, for a reason that will become obvious from considering the following 
sentence: 

(17) The men walk 

Any grammar of English must reflect the fact that "men" can (like most common 
nouns) be an NP as well as a noun. This fact introduces a SHIFT/SHIFT conflict 
when the word "men" is encountered, so that unless the oracle rules otherwise, 
the parser is likely to build the useless sentence "Men walk", despite the fact 
that there is no possible continuation of the words "the men walk" that could 
require an S at this point. Since the VP may be arbitrarily complex, this redundant 
analysis is likely to proliferate, threatening the usual exponential consequences. 
Of course, the oracle may indeed be smart enough to prevent this, and the chart- 
based techniques discussed below can also be applied, but it is a generic problem 
with the algorithm. Nevertheless, purely as a nondeterministic algorithm, it retains 
the appeal of requiring the absolute minimum of extra apparatus, over and above 
the grammar and the corresponding automaton. 

B. SIMPLE TOP-DOWN: The simple top-down or "recursive descent" algorithm 
is entirely predictive. Starting with the start symbol S, the algorithm non- 
deterministically picks a rule that expands that symbol, say rule 1 of the fragment 
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4, S —> 7VP VP. For each non-terminal symbol in the expansion, the algorithm 
recursively calls itself on that symbol. In order to exploit the standard left-to-right 
order of processing discussed in section 2 above, it is usual to carry out this re- 
cursion "leftmost first" - in this case, to process the NP before the VP. For each 
terminal or preterminal symbol, a lexical item of the right category must be present 
at the appropriate point in the string. The algorithm uses the stack of the PDA to 
keep track of the recursion. 

This process is conveniently described in terms of a dot notation, which captures 
the notion of a partially parsed expansion. Thus when we first call the algorithm 
recursively to parse the NP in the above expansion, we stack the following "dotted 
rule", so that when the algorithm returns from parsing the NP, it knows that it must 
parse the VP: 

(18) S-^NP.VP 

When it returns successfully from a recursion, it removes this symbol from the 
top of the stack and checks whether the dot is at the right hand end. If it is, the 
constituent is complete, and it returns. If it isn't, it moves the dot on past the next 
symbol, replaces the dotted rule on top of the stack, and recurses. That is, in this 
case it stacks the following dotted rule and goes off to look for a VP: 

(19) S -*NP VP . 

The left-to-right version of this algorithm can be informally stated as follows: 

(20) To parse a category of type C: 

1. Look at the category W of the next word in the string. If W=C, exit. 
2. Choose a rule that expands C, and recursively parse the elements of the 

expansion in order from leftmost to rightmost, using a dotted rule and 
the stack to keep track. 

This is the nondetermistic algorithm that was used in early implementations of 
ATN parsers. 

The top-down algorithm minimises the wasteful construction of spurious con- 
stituents that can never take part in any derivation. For example, under the standard 
leftmost-first regime, since the rules of the grammar of English never predict S 
immediately succeeding a Determiner, the algorithm never builds the spurious S 
"Men walk" in sentence 17. 

However, there are also countervailing disadvantages to the algorithm. Pre- 
cisely because it is predictive, the search space that it must find its way through 
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is effectively the entire space permitted by the grammar, including states corre- 
sponding to analyses for which there is no support whatever in the string itself. Of 
course this search space is narrowed considerable once the first words of the sen- 
tence have been accounted for. But it makes life more difficult for the oracle, and 
in the absence of the chart-based techniques discussed later the recursive descent 
parser is exponential in the worst case. 

c: MIXED BOTTOM-UP TOP-DOWN ALGORITHMS: Because of the respective dis- 
advantages of pure top-down and bottom up algorithms, there has been consider- 
able attention to a group of algorithms which attempt to combine the advantages 
of the two. 

The simplest left-to-right version of the idea is the "Left Corner" algorithm. It 
can be thought of as starting bottom up, with a word or a constituent that is actually 
present in the sentence, and then using those rules of which that constituent is the 
leftmost daughter to recursively left-corner parse further constituents to the right. 
It can be informally stated as follows: 

(21)    To parse a category of type C: 

1. Look at the category W of the next word in the string. 
2. IfW=C, exit. 
3. Choose a rule that expands any category N such that the leftmost 

element of the expansion is W. 
4. Recursively parse the remaining elements of the expansion in order 

from leftmost to rightmost, using a stacked dotted rule to keep track. 
5. Assign the category N to W and go to 2 

This elegant algorithm combines the "data-driven" advantage of the bottom up 
algorithm with the "predictive" virtues of the recursive descent algorithm. 

D. CHART PARSING: All three nondeterministic algorithms described in the pre- 
vious section are, in the absence of an effective oracle, technically computationally 
intractable. That is to say that if all we do to make them deterministic is to equip 
them with a "backtracking" memory for all choice-points, and an apparatus for 
failing back to these choice-points to try other alternatives, then all of them have 
worst-case exponential costs. 

Like all worst-case computational complexity results, this one should be treated 
with some caution. Whether the worst-case is encountered in practice depends on 
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a number of factors, including the particular grammar involved. In particular, the 
left-corner algorithm can perform better than the non-exponential CKY algorithm 
considered below for quite practically useful grammar fragments (Slocum 1981). 

Nevertheless, it is important to know that the complexity of the search problem 
can be greatly reduced, because of an important property of the parsing search 
space that has not been discussed here so far. 

Natural language sentences are typically made up of a number of "islands", 
corresponding to substrings whose analysis or analyses are independent of those 
on the neighbouring islands, and of the sentence as a whole. To take an example 
from Marcus 1980, when a processor has encountered only the words "Have the 
students who missed the exam...", it cannot know whether the word "have" is an 
auxilliary, as in the interrogative a, below, or a main verb, as in the imperative b: 

(22)    a. Have the students who missed the exam taken the make-up? 
b. Have the students who missed the exam take the make-up! 

It can only resolve this question when the next word, "take" or "taken", is pro- 
cessed. 

A predictive algorithm that happens to have chosen the wrong rule for expansion 
in analysing one or the other sentence up to this point should be able to take 
advantage of the work that it has done in parsing the NP "the students who missed 
the exam", since its analysis is identical in both cases. But blind backtracking back 
to the state where the wrong choice was made will lose this information. Similar 
arguments apply, mutatis mutandis, to a blindly backtracking shift-reduce parser. 

To take advantage of this characteristic of the search space, we must record 
the fact that a noun-phrase has been found spanning words two to seven of the 
sentence, together with the analysis. Any other analysis requiring a noun-phrase 
starting at position 2 can then simply use the result of the earlier analysis. 

The data structure in which this information is stored is called a "chart". 
All of the above exponential algorithms can be made to parse in worst case 
time n3 by the use of a chart. Many of the most efficient techniques that are 
known for computational natural language systems are of this kind, including the 
Cocke/Kasami/Younger algorithm (which is bottom-up), and Earley's 1970 algo- 
rithm, which is a refinement of the left-corner technique. This latter algorithm 
gains particular efficiency by the use of an "active" chart, in which not only com- 
plete constituents are stored, but also incomplete constituents, corresponding to 
the "dotted rules" used in the predictive algorithms. 
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5: DETERMINISTIC PARSING 

£>(n3) performance can still be impracticably expensive, especially if worst case is 
also average case, as it is in practice for the CKY algorithm, and if n can get large, 
as it does in compiling programming languages, so there is some interest in briefly 
considering a further class of algorithm that can have computational costs linear 
in n for a subset of grammars. So far we have only considered general-purpose 
nondeterministic algorithms. But we can in principle consider more grammar- 
specific algorithms that tell us more about the action(s) that should be taken in 
particular states. If the grammar allows us to make this machine so specific that 
it is entirely deterministic, then we shall have eliminated the oracle entirely. Of 
course, we cannot by definition do this for a truly nondeterministic grammar. 
But if the apparent nondeterminism in the grammar happens to be resolvable 
by looking ahead at a bounded number of immediately adjacent symbols in the 
string, then such such a deterministic algorithm exists. One particular variety 
of deterministic parser of this kind is called the LR(k) parser, because it does 
a Left-to-right scan, delivers a .Rightmost derivation, and uses a k symbol look- 
ahead. Since it is convenient to express the control for this algorithm as a matrix 
indexed by a) the state, b) the topmost element on the push-down stack, and c) the 
remaining input, such controls are refered to as "Li? tables". Since such tables 
can be quite complicated, there is intense interest among computer scientists 
in the fact that there are known techniques for constructing such deterministic 
algorithms automatically, from the original grammar. (In fact, such techniques 
provide the basis for one of the most widely used methods for automatically 
generating compilers, and many programming languages are as a result in the 
class LR(\) - that is, all nondetermismis resolvable by a one-symbol lookahead. 

We know that natural languages are not LR{k) languages from examples like 
the last example 22, as Marcus 1980 pointed out. That is, after the word "have" in 
that example, there is a non-determinism between an analysis according to which it 
is an auxiliary followed by a subject "the students ...", and one where it is a main 
verb followed by an object. This non-determinism is resolved by the word "take" 
or "taken". But because of the embedding property of English, the noun-phrase 
may be indefinitiely large - "the students", "the students who missed the exam", 
"the students who missed the exam that I set in the morning", and so on. There is 
therefore no bound upon the size k of the lookahead that this construction would 

require. 
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Nevertheless, we shall see below that natural lexical ambiguity does in fact look 
as if it might be resolvable by examining strictly bounded number of neighbouring 
symbols, and it is also the case that the techniques for automatically building LR 
tables deliver coherent (albeit nondeterministic) results for non-Li? grammars, a 
fact that has led to a number of generalisations of the technique. It is therefore 
interesting to ask whether some modification of the idea can be applied to natural 

languages. 
Marcus 1980 describes an LiMike parser with three distinctive characteristics. 

First, he allowed lookahead of up to three items - that is, k = 3. Second, in order 
to handle the nondeterminism just discussed, which manifestly does not cause 
human processors any noticeable difficulty, he allowed the lookahead window to 
include NPs (but no other constituent types), as well as words. Third, he assumed 
that the equivalent of the LR table was inexact. The residual nondeterminism 
was then to be resolved by default.21 Marcus then claimed that while English 
itself remained a non-deterministic language, the parser was only complete with 
respect to the deterministic fragment thus defined. (This also is a technique that 
has been used in LR-b&sed compilers). On occasion the defaults would engender 
the classical garden path effects. 

These moves restore the oracle to a position of importance, and in some sense 
compromise the original attraction of the LR algorithm. Nevertheless, determinis- 
tic parsing remains an attractive idea for practical applications, particularly where 
large volume is at a premium, and where the work of the oracle can be deferred 
by building "underspecified" syntactic derivations, as in the approach known as 
"D-theoretic" parsing (Marcus et al. 1983). 

6. SUMMARY: THE PSYCHOLOGICAL ALGORITHM 

Where among this maze of parameters is the psychological algorithm situated? Is 
it top-down or bottom up, or a mixture of the two? Does it use a chart, or an LR 

table, or not? 
Evolutionary considerations prejudice us against any theory of parsing that 

requires large amounts of extra apparatus, over and above the grammar and the 
corresponding automaton, for reasons similar to those that led us to reject the 
possibility of parsing by covering grammar. To that extent the bottom-up algorithm 
continues to exercise a considerable appeal. However, it passes a considerable 

21 Certain other residual sources of nondeterminism - in particular, noun-noun compounding - 
were to be resolved by other mechanisms discussed below. 
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burden on to the oracle. 
By contrast, the predictive algorithms such as Left-Corner, which ask less of 

the oracle, import extra mechanisms such as dotted rules to control the predictive 
search. This may not be too bad: such mechanisms are likely to be quite generally 
needed for a variety of hierarchically organised behaviours such as planned actions, 
and even for such lowly motor tasks as such as getting objects out of boxes and 
reaching around obstacles. 

Among the predictive algorithms, the simple top-down recursive descent algo- 
rithm has a strike against it that makes it perhaps the least psychologically plausible 
of all. Grammars that include left-recursive rules of the form A^ AB introduce 
a danger of infinite recursion in the leftmost-first version of the algorithm, as the 
parser predicts an A, which predicts an A, which predicts — (Nor can we get 
round this with some other parsing regime, such as rightmost-first, since some 
kind of recursion will cause similar versions for all recursive descent regimes.) 
Guarding against this possibility complicates the algorithm and its operations in 
ways that seriously stretch psychological credibility. 

For similar reasons, the LR parser, which also complicates the algorithm by 
introducing a language-specific LR table, seems to be implausible in evolutionary 
and developmental terms, since like a covering grammar, it needs to be recomputed 
every time a modification is made to the grammar. When we come to discuss the 
oracle below, we shall see that there are other ways in which the consequences of 
lexical nondeterminism can be minimised, and that the structural nondeterminism 
that causes LR tables for natural languages to be inexact is the major problem for 
the oracle. 

The psychological relevance of the chart is also questionable. The fact that naive 
subjects and everyday language users are so rarely aware of syntactic ambiguity, 
together with the existence of garden path sentences, makes it unlikely that human 
language processors have access to such a powerful memory device, and suggests 
that they depend upon an oracle that usually gets it right first time. Most of the 
psychological theories discussed below make this assumption. 

Unfortunately, until we know more about that oracle, just about the only further 
conclusion we can state with any confidence is that the grammar itself does 
seem to favour algorithms that go from left-to-right, because of the tendency to 
mark left boundaries. (This is probably a major reason why simple left-corner 
parsing works as well as it does). This conclusion hardly comes as a surprise. In 
other respects, natural grammars look surprisingly unhelpfully designed for all of 
these algorithms. For example, for all left-to-right algorithms, processing right- 
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branching structures causes the stack to grow, while left-branching structures keep 
the stack small. (In the case of bottom-up algorithms, the items on the stack are 
unattached constituents. In the case of top-down algorithms, they are dotted rules, 
or the equivalent.) In view of the earlier observation that limitations on center- 
embedding seem likely to arise from stack limitations, one might therefore have 
expected natural grammars to minimise this burden by favouring left-branching 
constructions. In fact, however, right branching appears to be widespread among 
the languages of the world, according to the usual linguistic analyses. We shall 
return to this curious fact below. 

C: THE ORACLE 

1: STOCHASTIC TECHNIQUES. 

One of the most important and useful techniques for reducing nondeterminism, at 
least at the level of the lexicon, is also one of the oldest, with origins in Information 
Theory that predate Artificial Intelligence and even Generative Grammar itself. 

It has been known since the work of Shannon and Weaver in the early fifties 
that natural language text can be modelled to a close approximation by stochastic 
finite-state Markov processes. Of course, this fact tells us nothing about the 
grammar that in part determines the stochastic behaviour, as Chomsky 1957, p. 17 
influentially pointed out. But it is a consequence of this fact that the part of speech 
corresponding to any given word in a sentence is in principle highly predictable 
solely on the basis of the parts of speech of the two or three preceding words, 
solely on the basis of the stochastic model, and without benefit of higher-level 

analysis. 
This observation does not in itself solve the problem, for the finite automata in 

question are large, and the sheer volume of distributional information that they 
depend upon is gigantic. For this reason, stochastic and probablistic techniques 
played very little part in the early development of the computational natural 
language processing techniques discussed above. However, it was always likely 
that such techniques would eventually prove useful in drastically reducing lexical 
ambiguity (cf. Chomsky 1957, p.17, n.4). Two developments at the start of 
the eighties allowed this possibility to be realised. The first was that computing 
machinery became fast enough, big enough in terms of memory, and cheap enough, 
to actually try what had become at the time a rather unfashionable approach. The 
second crucial development was the invention of some quite new algorithms 
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for constructing such "hidden" Markov models automatically, via re-estimation 
procedures, on the basis of exposure to fairly large amounts of text annotated with 
part-of-speech tags by hand, whose assembly was also crucial to this development. 
With the use of such techniques, it is possible to disambiguate part-of-speech with 
a reliability of around 97% for text where all words are known (Brill 1994). 

These figures should be kept in perspective. They mean that roughly every other 
sentence will include a word for which the preferred part of speech is incorrect. 
It should also not be forgotten that choosing part-of-speech on the basis of basic 
or unigram frequency alone yields around 93% correct disambiguation. However, 
the efficiency of all of the algorithms considered above can be greatly increased 
by using part-of-speech disambiguation as a component of the oracle in an "n- 
best" parser architecture, whereby the parser only considers a small number of 
alternative part-of-speech categories for ambiguous words, in the order of their 
likelihood according to the model down to some threshold. For example, it is likely 
that such a model would make the simple bottom up algorithm more efficient by 
excluding the possibility of the word "men" being a noun phrase rather than a 
noun in the earlier example 17 "The men walk", thereby avoiding the creation of 
a redundant S "men walk". That is, it is likely that SHIFT/SHIFT conflicts can be 
largely eliminated for the shift-reduce algorithm by this method. 

Once the Markov model is trained, it is computationally extremely cheap, be- 
cause it is a finite state device. It is therefore likely that such stochastic oracles 
and the n-best architecture will be standard in large coverage natural language 
processing programs in future. It will be interesting in this period to see how a 
number of proposals to generalise the techniques will fare, including proposals 
to disambiguate word senses as well as part-of -speech, and a number of com- 
putationally less resource-intensive rule-based training methods. There are also 
a number of interesting proposals to embed such mechanisms in neural networks 
and other "connectionist" devices, whose computational implications go beyond 
the scope of the present essay. Although there have also been related proposals 
for stochastic Context-free Grammars, it seems much less likely that these tech- 
niques will cope with the other variety of syntactic nondeterminism, arising from 
structural ambiguity in examples like 1 "put the book on the table in your pocket", 
and that some of the other techniques discussed below will be needed as well. 

The psychological relevance of stochastic lexical disambiguation is less clear. 
On the one hand, there is plenty of evidence that humans and other animals 
are sensitive to statistical regularities across extended periods. While it seems 
somewhat less likely that they can compute higher-order statistics of the kind 
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required to train Hidden Markov Models, some of the rule-based alternatives may 
be more psychologically plausible. Nevertheless, it should be borne in mind that 
the high redundancy of real text which these techniques exploit is in actual fact 
a by-product of the grammar and the content of the text. The possibility remains 
open that it is at these higher levels that humans filter out nondeterminism. 

2: STRATEGY-BASED TECHNIQUES 

One important group of proposals for the psychological oracle come from the 
psychologists themselves. It is pleasant to report that they have been enthusias- 
tically taken up by computational linguists attempting to increase efficiency for 
natural language parsers. These proposals originate in work by Fodor, Bever and 
Garrett, 1974, who proposed that the garden path effect of sentences like 3, "The 
horse raced past the barn fell" arose from the use by the parser of the "Canonical 
Sentoid Strategy", which esentially said that if the parser ever encountered an NP 
followed by what could be a tensed verb, then it should act on the assumption that 
both elements are the subject and tensed verb of a "sentoid" or underlying clause. 
The claim was that this strategy, which resolves the lexical nondeterminism of the 
word "raced", is usually beneficial, but in this case commits the processor to a 
blind alley. 

The Canonical Sentoid Strategy was only one of a number of such heuristics 
that supposedly guided the parser through the search space. To a modern eye, rules 
like this look uncomfortably as if they duplicate the rules of the grammar itself - 
such as rule 1 of the ATN 1 - and in fact later strategy-based approaches all attempt 
to separate the heuristic and grammatical components, via the assumption of more 
"surfacey" theories of grammar, including the ATN, rather than the framework of 
the Standard Theory assumed by Fodor et al. 

One important early modification of the strategy idea was presented by Kimball 
1973 who proposed seven very general principles of "surface structure parsing". 
Kimball was primarily a linguist, and was influential in the development of the Base 
Generation Hypothesis concerning the competence grammar. He was therefore in 
a position to make a much cleaner separation between the grammar, the algorithm, 
and the oracle than Fodor et al. had been. 

Many of Kimball's principles are properly regarded as properties of grammar 
or the algorithm, rather than the oracle. But two of them seemed to capture a large 
number of phenomena concerning the resolution of structural ambiguity, and had 
the attraction of really looking like properties of a parser rather than misplaced 
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rules of grammar. In fact Kimball offered a number of conjectures as to why the 
parser might have these properties, in terms of comparitive structural complexity, 
time to completion, and so on. Close relatives of these two principles turn up in a 
number of proposals which are often called "Two Factor" theories of the oracle. 
Kimball called them "Right Association" and "Closure," but it will be convenient 
to refer to the latter as "Minimal Attachment," the name by which a more specific 
but related principle goes in Lyn Frazier's theory, for it is in Frazier's 1978 work 
that these two principles reached their most refined form. 

The detailed formulation of these principles need not concern us here, since our 
principal concern is with their computational interpretation. It will suffice to say 
that the first principle, Right Association, captures the fact that in sentences like 
the following, the prefered analysis seems to be the one where the VP modifier 
"last Tuesday" is predicated of Nixon's death rather than Bill's announcement. 

(23) Bill said Nixon died last Tuesday. 

Minimal Attachment, on the other hand, captures the fact that in the following 
sentence there is a preference for the analysis where the modifier "for Susan" 
modifies carrying the package rather than the package: 

(24) Tom carried the package for Susan. 

It is this principle that captures the fact that we go wrong in Bever's garden path 
sentences (although both Kimball and Frazier need further apparatus to explain 
why recovery is impossible). That is to say that in the following fragment of the 
sentence 3, exactly the same factors favour the attachment of the VP "raced past 
the barn" to the NP as subject, rather than as a Past-participial modifier attached 
to the NP itself. 

Following Frazier's work, which initiated a considerable body of experimental 
work supporting the reality of these effects, a number of computational accounts 
attempted to capture them in terms of simple properties of parsers. Among these, 
Wanner 1980 showed that Right Association could be captured in the ATN in 
terms of a global ordering of transition types equivalent to rule ordering in a 
more conventional grammar. Perhaps the most elegant computational account 
was provided by Pereira 1985, who showed that Right Association was equivalent 
in a shift-reduce parser to resolving all SHIFT/REDUCE conflicts in favour of 
shifting, and resolving all REDUCE/REDUCE conflicts in favour of the reduction 
that removes most nodes from the stack. (Pereira's parser was in fact an LR(1) 
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parser with a not-fully-deterministic LR table, which these two heuristics were 

used to render fully deterministic.) 
However, at the very time these elegant computational accounts were being 

put forward, the very basis of the effects that they were to explain was being 
called into question by certain other experimental approaches with close links to 
computational models. 

3: LEXICAL PREFERENCES 

First, it was immediately noticeable that effects like Minimal Attachment were 
sensitive to the particular lexical items involved. Thus, Minimal Attachment 
makes the right prediction in a, below, but in b, it makes the wrong prediction: 

(25)    a. The woman positioned the dress on the rack. 
b. The woman wanted the dress on the rack. 

One effect of the move to Base Generation by Bresnan and others had been to 
emphasise Lexicalism in the theory of grammar, and to include more informa- 
tion concerning subcategorisation or function-argument relations into the lexical 
entries for verbs. This proposal, originally motivated by purely linguistic consid- 
erations, suggested a natural way to capture the phenomenon in the performance 
theory, via differential ordering of the lexical entries determining the various sub- 
categorisation possibilities for different verbs in LFG (Ford et al. in 1982). Such 
an ordering on lexical entries might also be produced dynamically, as a result of an 
n-gram based lexical disambiguator of the kind described above, with the lexical 
categories taking the part of the part-of-speech tags. (This approach is currently 
being pursued in n-best parsers for other varieties of lexicalist grammars, including 

TAG and CCG.) 
The lexicalist account of attachment preferences contributes a major piece to 

solution of the puzzle, and has been further refined by Pritchett 1992, Trueswell 
et al., 1994, and Gibson 1994, in press. However, it was also clear that similar 
effects inconsistent with Minimal Attachment could be found for the same verb 
in combination with different arguments, suggesting that something more was 

involved. 

4: INCREMENTAL SEMANTIC FILTERING 

In his first identification of the garden-path sentences, Bever noted that the effect 
was sensitive to content. Thus while a, below, is a standard garden path, in b, the 

effect is greatly reduced: 
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(26) a. The doctor sent for the patient arrived 
b. The flowers sent for the patient arrived 

The observation suggests that human processors can take into account the relative 
plausibility of doctors versus flowers as agents of the action of sending for some- 
thing or someone. In fact, it suggests that they can take account of this plausibility 
information early on in the course of processing, even before the spurious clause 
is complete. (Otherwise we would have no explanation for the persistence of the 
garden-path effect in case a). This and a number of other experimental phenomena 
led Marslen-Wilson et al. 1978 to argue that the primary source of disambiguating 
information drawn upon by the oracle was semantic. 

This argument for semantically "interactive" parsing aroused surprisingly strong 
opposition among psychologists at the time. The reason was greatly to do with 
doubt and confusion concerning the computational feasibility of the proposal. 
This is surprising, for there was already available a very vivid existence proof 
of something like the necessary mechanism, embodied in the well-known natural 
language understanding program of Winograd 1972, which interpreted questions 
and commands in a simple simulated world of toy blocks on a table, using a 
dynamically changing discourse model. 

Winograd proposed, not only that the parser should pay attention to semantic 
requirements such as animacy that verbs like "send for" imposed upon their 
subjects, but also that attachment ambiguities of the kind found in his domain in 
instructions like the following should be resolved simply by adopting whichever 
analysis successfully referred to an entity in the world: 

(27) Put the block in the box on the table 

The program resolved this ambiguity on the basis of whether there was in the 
discourse model a block unique by virtue of being the only block or a recently 
mentioned block, plus a box similarly unique by virtue of being on the table, or 
whether instead there was a block unique by virtue of being in a unique box, 
plus a unique table. Thus Winograd's proposal was that the oracle worked by 
semantically "filtering" the alternatives proposed by the parser. 

This definition of semantically interactive parsing is often called "weak" interac- 
tion, because it assumes that the grammar and the algorithm propose well-formed 
analyses entirely autonomously, and that the oracle merely disposes among the 
alternatives, killing off or interrupting those analyses that are either semantically 
incoherent (flowers being unqualified to send for things) or referentially unsuc- 
cessful (there being no block in the box). 
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Part of the resistance to Marslen- Wilson's proposal arose from a confusion of the 
weakly interactive or filtering processor with an alternative proposal for "strong" 
interaction, according to which an autonomously produced interpretation could 
supposedly manipulate the syntactic component itself, activating or suppressing 
rules, and thereby determining in advance which analysis was built. The sense 
in which it is possible to build semantic analyses independently of syntax, and 
the question of what this bought the processor if it still had to build the syntactic 
analysis to check its predictions were never very clearly resolved, and it is not clear 
whether any truly strongly interactive processor was ever built. Such a model was 
strenuously (and in the view of the present author, correctly) opposed by Fodor 
1983, on the grounds that it violated the modularity criterion - in effect, that it 
really did not qualify as an explanation at all. However, Fodor himself pointed 
out that the weak or filtering interaction was entirely modular (1983, see p.78 and 
135). 

Crain and Steedman (1985) argued that some version of the weakly interactive 
oracle proposed by Winograd could account not only for attachment preferences, 
but also for the phenomenon of garden pathing, or unrecoverably incorrect at- 
tachment preferences. They made the following further assumptions about the 
processor. 

First, they argued from minimal pairs like 26 that filtering had to occur very 
early in the analysis, well before the end of the clause. It followed that semantic 
interpretations had to be constructed in parallel with syntactic analysis, much as 
the earlier DCG notation suggests, and that partial interpretations, corresponding 
to syntactically incomplete fragments such as the flowers sent for ..., must be 
available. 

Second, they argued that, unlike syntactic well-formedness, semantic and ref- 
erential anomaly was relative rather than all-or-none. It followed that, unlike 
structural strategy-based parsers, the weakly interactive processor had to produce 
all partial analyses at a choice point, complete with partial interpretations, and 
then reject or interrupt all but the best before continuing the "best-first" search. 

Third, they claimed that when sentences are processed in isolation and out 
of context, as in the typical psycholinguistic experiment of the day, the oracle 
chooses that analysis whose (semantic and referential) pragmatic presuppositions 
were easiest to "accomodate", or add to the discourse model. In the case of garden 
path examples like "The horse raced past the barn fell", they argued that the single 
presupposition that there was a unique horse was easier to accomodate than the 
presupposition that there were many horses, one of which was distinguished by 
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the property that a hitherto unknown agent caused it to race somewhere. They pre- 
sented experimental evidence that attachment preferences were under the control 
of referential context, by prefacing minimal pairs of locally attachment-ambiguous 
target sentences by contexts which either established two women respectively with 
and without a distinguishing property, or one woman with that property. 

(28)   CONTEXTS: 

1. A psychologist was counselling two women. He was worried about 
one of them, but not about the other. 

2. A psychologist was counselling a man and a woman. He was worried 
about one of them, but not about the other. 

TARGETS: 

1. The psychologist told the woman that he was having trouble with 
her husband. 

2. The psychologist told the woman that he was having trouble with to 
visit him again. 

Both target sentences have a local ambiguity at the word that, which is only 
resolved when the italicised words are encountered. Minimal attachment would 
predict that the second target would always cause a garden path. In fact however 
this garden path effect is eliminated when the sentence is preceded by the first 
context, which satisfies the presupposition of the relative clause analysis. And a 
garden path effect is induced in the first target when it is preceded by the same 
context, because by the same token it fails to support the presupposition that there 
is a unique woman. These authors also show that certain predictions concerning 
the effect of definiteness on garden paths in the null context. The experiments 
were repeated and extended with improved materials by Altmann (Altmann and 

Steedman 1988). 
There is continuing disagreement on the question of what other mechanisms 

may also be involved in the oracle. Perhaps the most interesting questions for the 
computer scientists to ask the psychologists is whether there is a psychological role 
for the low level stochastic mechanisms that have proved so effective in practical 
applications, and whether there is a residual role for structure-based strategies, or 
whether human processors work excusively at the level of semantics to achieve 
the same filtering effect. However, there is now fairly general agreement that the 
weak interaction plays an important role. 
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Ill: CONCLUSION 

Many open questions remain concerning the exact computational nature of all 
three modules of the psychological processor. The explanatory coverage of the 
theory of competence grammar remains incomplete. The choice among the various 
available algorithms depends upon the further identification of the oracle, and to 
some extent upon further questions concerning the computational architecture 
itself. The range of resources that the oracle itself draws upon, remains an open 
question for further research. 

Nevertheless, the results and notations of computer science make it it possible 
to see that everything we know experimentally about the psychological sentence 
processor is compatible with the expectation it will eventually be seen to an 
extremely simple, explanatory, and modular device in both computational and 
evolutionary terms. The working models that computational linguistics offers 
provide a proof of concept for systems involving extremely surfacey grammars, 
in which syntactic composition and semantic composition are very closely related 
indeed, and in which such grammars can be used directly by algorithms that may 
use very little more than the minimal automaton characteristic of the class of 
grammars in question and the simplest language independent algorithm, working 
under the guidance of an oracle that exploits to the full the weak interaction that 
such semantically transparent grammars allow. 

A number of puzzles remain. One is that the predominantly right branching 
structure evinced by natural languages according to most theories of grammar still 
appears to maximise the working memory requirements for left-to-right parsers. 
Another is that the same predominance of right-branching seems to require some 
extra apparatus for the weakly-interactive oracle to work. Right branching gram- 
mars like the one introduced at 4 are immediately compatible with incremental 
interpretation of constituents. However, we have seen that interpretations for left- 
prefixes like "The flowers sent for ...," which are not constituents under such 
grammars, appear nevertheless to be available to the parser. While interpretations 
for non-constituents can be built under any grammar, doing so requires extra struc- 
tures that are not available from the grammar, and thus compromises the strictest 
interpretation of the Strong Competence Hypothesis.22 It is likely that compu- 
tational linguistics will continue to play an important part in research towards a 

22I address this question elsewhere - see Further Reading, below. 
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resolution of these further problems. 

FURTHER READING 

I have assumed familiarity above with the basic ideas of Generative Grammar. 
Most introductory texts on linguistics, psycholinguistics, and computational lin- 
guistics cover this material. I have also assumed a nodding aquaintance with 
Formal Language Theory, in particular the Chomsky hierarchy. This and much 
other useful material is covered by Partee et al, 1990. The standard reference on 
the subject, Harrison 1978, is more technical. Allen 1987 is an excellent introduc- 
tory text to the broader field of Computational Linguistics, and the indispensible 
collection edited by Grosz et al. 1986 gathers a number of key research papers 
in this broader area, including several of those cited above. The best gentle in- 
troduction to the Computer Scientists view of Algorithmics in general is Harel's 
1987. 

A trustworthy guide to the characteristics of a number of alternative parsing 
regimes is Kay 1980, from whom I have borrowed the general tri-modular view 
of the processor, generalizing his notion of an "agenda" to the notion of the oracle 
presented above. The grammars, algorithms, and oracles decribed above are all 
very readily implementable in the programming language Prolog, and the elegant 
text by Pereira and Shieber 1987 provides all the help that is needed. The most 
complete accessible account of the ATN, including many important features not 
discussed here, is Woods 1973. The question of the automata theoretic power 
required for Natural Languages is helpfully discussed by Gazdar 1988, and Joshi 
etal., 1991. The important collection edited by Dowty et al. 1985 brings together a 
number of computational and psycholinguistic papers, including several discussed 
above. I have not attempted to survey the huge and rapidly changing experimental 
psycholinguistic literature on this topic here. 

The present paper is a companion to my "Computational Aspects of Grammar", 
in which the question of the nature of the competence grammar itself, and its 
relation to the problem of incremental semantic interpretation and weakly interac- 
tive parsing under a very strict reading of the Strong Competence Hypothesis, are 
investigated in greater depth. Both papers are intended to be read independently, 
and as a consequence certain sections concerning notation and the theory of natural 
language grammar are common to both. 
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